现代商业中大数据的价值体现在哪?

本文转载自:https://www.afenxi.com/81761.html

文 | 董飞

大数据最大的价值不是事后分析,而是预测和推荐我们可以看到”精准推荐”在电商中的运用,预测性分析成为大数据在零售业的主流。

服装网站Stitch Fix例子,在个性化推荐机制方面,大多数服装订购网站采用的都是用户提交身形、风格数据+编辑人工推荐的模式,Stitch Fix不一样的地方在于它还结合了机器算法推荐。这些顾客提供的身材比例,主观数据,加上销售记录的交叉核对,挖掘每个人专属的服装推荐模型。 这种一对一营销是最好的服务。

现代商业中大数据的价值体现在哪?

数据整合改变了企业的营销方式,现在经验已经不再是单纯地人去一步步试错,而是通过消费者的行为数据做推荐,帮助有经验的营销人员进行更高效准确的决策。未来,销售人员不再只是销售人员,而能以专业的数据预测,搭配人性的亲切互动推荐商品,升级成为顾问型销售。

下面举个例子说明精准营销的好处。

如果你打算搜集200份有效问卷,依照以往的经验,你需要发多少份问卷,才能达到这个目标?预计用多少预算和时间来执行?

以往的方法是这样的:评估网络问卷大约是5%的回收率,想要保证收到200份的问卷,就必须有20倍的发送量,也就是发出4000份问卷,一个月内如果可以回收,就是不错的表现。

但现在不一样了,在执行大数据分析的3小时内,就可以轻松完成以下的目标:

1. 精准挑选出1%的VIP顾客

2. 发送390份问卷,全部回收

3. 问卷寄出3小时内回收35%的问卷

4. 5天内就回收了超过目标数86%的问卷数

5. 所需时间和预算都在以往的10%以下

怎么做到在问卷发送后的3个小时就回收35%? 因为数据做到了发送时间的”一对一定制化”,利用数据得出,A先生最可能在什么时间打开邮件就在那个时间点发送问卷。

比如有些人在上班路上会打开邮件,但如果是开车族,并没有时间填写答案,而搭乘公共交通工具的人,上班路上的时间会玩手机,填写答案的概率就高,这些都是数据细分受众的好处。

生成用户的精准画像大致分成三步:

1 采集和清理数据:用已知预测未知

首先要掌握繁杂的数据源。包括用户数据、各式活动数据、电子邮件订阅数、线上或线下数据库及客户服务信息等。这个是累积数据库;这里面最基础的就是如何收集网站/APP用户行为数据。

比如当你登陆某网站,这个Cookie就一直驻留在浏览器中,当用户触及的动作,点击的位置,按钮,点赞,评论,粉丝,还有访问的路径,可以识别并记录他/她的所有浏览行为,然后持续分析浏览过的关键词和页面,分析出他的短期需求和长期兴趣。还可以通过分析朋友圈,获得非常清晰获得对方的工作,爱好,教育等方面,这比个人填写的表单,还要更全面和真实。

我们用已知的数据寻找线索,不断挖掘素材,不但可以巩固老会员,也可以分析出未知的顾客与需求,进一步开发市场。

2 用户分群:分门别类贴标签

描述分析是最基本的分析统计方法,描述统计分为两大部分:数据描述和指标统计。

数据描述:用来对数据进行基本情况的刻画,包括数据总数,范围,数据来源。

指标统计:把分布,对比,预测指标进行建模。这里常常是Data mining的一些数学模型,像响应率分析模型,客户倾向性模型,这类分群使用Lift图,用打分的方法告诉你哪一类客户有较高的接触和转化的价值。

在分析阶段,数据会转换为影响指数,进而可以做”一对一”的精准营销。比如一个80后客户喜欢在生鲜网站上早上10点下单买菜,晚上6点回家做饭,周末喜欢去附近吃日本料理,经过搜集与转换,就会产生一些标签,包括”80后””生鲜””做饭””日本料理”等等,贴在消费者身上。

3 制定策略:优化再调整

有了用户画像之后,便能清楚了解需求,在实际操作上,能深度经营顾客关系,甚至找到扩散口碑的机会。例如上面例子中,若有生鲜的打折券,日本餐馆最新推荐,营销人员就会把适合产品的相关信息,精准推送这个消费者的手机中;针对不同产品发送推荐信息,同时也不断通过满意度调查,跟踪码确认等方式,掌握顾客各方面的行为与偏好。

除了顾客分群之外,营销人员也在不同时间阶段观察成长率和成功率,前后期对照,确认整体经营策略与方向是否正确;若效果不佳,又该用什么策略应对。反复试错并调整模型,做到循环优化。

现代商业中大数据的价值体现在哪?

这个阶段的目的是提炼价值,再根据客户需求精准营销,最后追踪客户反馈的信息,完成闭环优化。

我们从数据整合导入开始,聚合数据,在进行数据的分析挖掘。数据分析和挖掘还是有一些区别。数据分析重点是观察数据,单纯的统计,看KPI的升降原因。而数据挖掘从细微和模型角度去研究数据,从学习集,训练集发现知识规则,

除了一些比较商业化的软件SAS,WEKA功能强大的数据分析挖掘软件,这边还是更推荐使用R,Python。由于SAS,SPSS本身比较昂贵,很难做页面和服务级别的API,而Python和R有丰富的库,可以类似WEKA的模块,无缝交互其他API和程序,这里还需要熟悉数据库,Hadoop等。

腾讯云推出云产品限时特惠抢购活动:2C2G云服务器7.9元/月起
本文链接:https://www.jhelp.net/p/4pdlP0PmLTIAKB5h (转载请保留)。
关注下面的标签,发现更多相似文章